13 research outputs found

    PIYAS-Proceeding to Intelligent Service Oriented Memory Allocation for Flash Based Data Centric Sensor Devices in Wireless Sensor Networks

    Get PDF
    Flash memory has become a more widespread storage medium for modern wireless devices because of its effective characteristics like non-volatility, small size, light weight, fast access speed, shock resistance, high reliability and low power consumption. Sensor nodes are highly resource constrained in terms of limited processing speed, runtime memory, persistent storage, communication bandwidth and finite energy. Therefore, for wireless sensor networks supporting sense, store, merge and send schemes, an efficient and reliable file system is highly required with consideration of sensor node constraints. In this paper, we propose a novel log structured external NAND flash memory based file system, called Proceeding to Intelligent service oriented memorY Allocation for flash based data centric Sensor devices in wireless sensor networks (PIYAS). This is the extended version of our previously proposed PIYA [1]. The main goals of the PIYAS scheme are to achieve instant mounting and reduced SRAM space by keeping memory mapping information to a very low size of and to provide high query response throughput by allocation of memory to the sensor data by network business rules. The scheme intelligently samples and stores the raw data and provides high in-network data availability by keeping the aggregate data for a longer period of time than any other scheme has done before. We propose effective garbage collection and wear-leveling schemes as well. The experimental results show that PIYAS is an optimized memory management scheme allowing high performance for wireless sensor networks

    An Enhanced Architecture to Resolve Public-Key Cryptographic Issues in the Internet of Things (IoT), Employing Quantum Computing Supremacy

    Get PDF
    The Internet of Things (IoT) strongly influences the world economy; this emphasizes the importance of securing all four aspects of the IoT model: sensors, networks, cloud, and applications. Considering the significant value of public-key cryptography threats on IoT system confidentiality, it is vital to secure it. One of the potential candidates to assist in securing public key cryptography in IoT is quantum computing. Although the notion of IoT and quantum computing convergence is not new, it has been referenced in various works of literature and covered by many scholars. Quantum computing eliminates most of the challenges in IoT. This research provides a comprehensive introduction to the Internet of Things and quantum computing before moving on to public-key cryptography difficulties that may be encountered across the convergence of quantum computing and IoT. An enhanced architecture is then proposed for resolving these public-key cryptography challenges using SimuloQron to implement the BB84 protocol for quantum key distribution (QKD) and one-time pad (OTP). The proposed model prevents eavesdroppers from performing destructive operations in the communication channel and cyber side by preserving its state and protecting the public key using quantum cryptography and the BB84 protocol. A modified version is introduced for this IoT situation. A traditional cryptographic mechanism called 'one-time pad' (OTP) is employed in hybrid management

    Impact of Web 2.0 on digital divide in AJ&K Pakistan

    Get PDF
    Abstract—Digital divide is normally measured in terms of gap between those who can efficiently use new technological tools, such as internet, and those who cannot. It was also hypothesized that web 2.0 tools motivate people to use technology i.e. social networking sites can play an important role in bridging digital gap. The study was conducted to determine the presence of digital divide in urban and rural areas of district Muzaffrabad, Azad Jammu & Kashmir. A cross-sectional community based survey was conducted involving 384 respondents from city Muzaffrabad and village Garhi Doppta. The existence of digital divide was assessed on the basis of the questionnaires given. Chi- square test was applied to find the association of different demographic and ICT related factors with internet usage. Despite the growing awareness there are possibilities of gender, age and area based digital divide. Outcomes of the survey affirmed that web 2.0 based web-sites are becoming popular and attracting people to use internet

    BAS: The Biphase Authentication Scheme for Wireless Sensor Networks

    No full text
    The development of wireless sensor networks can be considered as the beginning of a new generation of applications. Authenticity of communicating entities is essential for the success of wireless sensor networks. Authentication in wireless sensor networks is always a challenging task due to broadcast nature of the transmission medium. Sensor nodes are usually resource constrained with respect to energy, memory, and computation and communication capabilities. It is not possible for each node to authenticate all incoming request messages, whether these request messages are from authorized or unauthorized nodes. Any malicious node can flood the network by sending messages repeatedly for creating denial of service attack, which will eventually bring down the whole network. In this paper, a lightweight authentication scheme named as Biphase Authentication Scheme (BAS) is presented for wireless sensor networks. This scheme provides initial small scale authentication for the request messages entering wireless sensor networks and resistance against denial of service attacks

    A hybrid architecture for resolving cryptographic issues in Internet of Things (IoT), employing quantum computing supremacy

    No full text
    The Internet of Things (IoT) is shaping the world of every economy and client. By 2023, clients, companies, and governments will be able to install a total of 40 billion IoT devices worldwide. The 2021's challenges simply confirmed the necessity to secure all four elements of the IoT Model: Sensors, Networks, Cloud, and Applications. Therefore, it is important to be pragmatic regarding the extreme threats and high worth of attacks on secrecy in IoT systems. Although the concept of convergence of IoT and Quantum Computing is not a standby topic, it had been mentioned in several works of literature and coated by many researchers, however, nothing is getting ready for sensible applications thus far. Quantum Computing is not prepared nevertheless, it is so far from preparation on a billboard scale. Quantum computing resolves most of the issues in IoT however it occurs yet below the analysis phase and can take over a couple of years to induce in public obtainable use. During this research, the author will start through a broad introduction to the internet of things and Quantum Computing and carry on with issues that can be featured throughout the convergence of Quantum Computing and IoT. To solve these integration issues in terms of cryptography this research will also provide the answer. At long last, this research will call attention to the hybrid of both fields to existing IoT network design

    Collaborative Learning Based Sybil Attack Detection in Vehicular AD-HOC Networks (VANETS)

    No full text
    Vehicular Ad-hoc network (VANET) is an imminent technology having both exciting prospects and substantial challenges, especially in terms of security. Due to its distributed network and frequently changing topology, it is extremely prone to security attacks. The researchers have proposed different strategies for detecting various forms of network attacks. However, VANET is still exposed to several attacks, specifically Sybil attack. Sybil Attack is one of the most challenging attacks in VANETS, which forge false identities in the network to undermine communication between network nodes. This attack highly impacts transportation safety services and may create traffic congestion. In this regard, a novel collaborative framework based on majority voting is proposed to detect the Sybil attack in the network. The framework works by ensembling individual classifiers, i.e., K-Nearest Neighbor, Naïve Bayes, Decision Tree, SVM, and Logistic Regression in a parallel manner. The Majority Voting (Hard and Soft) mechanism is adopted for a final prediction. A comparison is made between Majority Voting Hard and soft to choose the best approach. With the proposed approach, 95% accuracy is achieved. The proposed framework is also evaluated using the Receiver operating characteristics curve (ROC-curve)

    Secure Healthcare Record Sharing Mechanism with Blockchain

    No full text
    The transfer of information is a demanding issue, particularly due to the presence of a large number of eavesdroppers on communication channels. Sharing medical service records between different clinical jobs is a basic and testing research topic. The particular characteristics of blockchains have attracted a large amount of attention and resulted in revolutionary changes to various business applications, including medical care. A blockchain is based on a distributed ledger, which tends to improve cyber security. A number of proposals have been made with respect to the sharing of basic medical records using a blockchain without needing earlier information or the trust of patients. Specialist service providers and insurance agencies are not secure against data breaches. The safe sharing of clinical records between different countries, to ensure an incorporated and universal medical service, is also a significant issue for patients who travel. The medical data of patients normally reside on different healthcare units around the world, thus raising many concerns. Firstly, a patient’s history of treatment by different physicians is not accessible to the doctor in a single location. Secondly, it is very difficult to secure widespread data residing in different locations. This study proposed record sharing in a chain-like structure, in which every record is globally connected to the others, based on a blockchain under the suggestions and recommendations of the HL7 standards. This study focused on making medical data available, especially of patients who travel in different countries, for a specific period of time after validating the required authentication. Authorization and authentication are performed on the Shibboleth identity management system with the involvement of patient in the sanction process, thereby revealing the patient data for the specific period of time. The proposed approach improves the performance with respect to other record sharing systems, e.g., it reduces the time to read, write, delete, and revoke a record by a noticeable margin. The proposed system takes around three seconds to upload and 7.5 s to download 250 Mb of data, which can contain up to sixteen documents, over a stable network connection. The system has a latency of 413.76 ms when retrieving 100 records, compared to 447.9 and 459.3 ms in previous systems. Thus, the proposed system improved the performance and ensured seclusion by using a blockchain

    Analysis and Evaluation of Braille to Text Conversion Methods

    Get PDF
    Technology is advancing rapidly in present times. To serve as a useful and connected part of the community, everyone is required to learn and update themselves on innovations. Visually impaired people fall behind in this regard because of their inherent limitations. To involve these people as active participants within communities, technology must be modified for their facilitation. This paper provides a comprehensive survey of various user input schemes designed for the visually impaired for Braille to natural language conversion. These techniques are analyzed in detail with a focus on their accessibility and usability. Currently, considerable effort has been made to design a touch-screen input mechanism for visually impaired people, such as Braille Touch, Braille Enter, and Edge Braille. All of these schemes use location-specific input and challenge visually impaired persons to locate specified places on the touch screen. Most of the schemes require special actions to switch between upper and lowercase and between numbers and special characters, which affects system usability. The key features used for accessing the performance of these techniques are efficiency, accuracy, and usability issues found in the applications. In the end, a comparison of all these techniques is performed. Outcomes of this analysis show that there is a strong need for application that put the least burden on the visually impaired users. Based on this survey, a guideline has been designed for future research in this area
    corecore